Towards Energy-Efficient, Privacy-Aware, Decentralized Device-to-Device Content Delivery

AIMS 2014, Brno, Czech Republic, 30 June - 3 July 2014

Leonhard Nobach, M.Sc.
inobach@ps.tu-darmstadt.de

Prof. Dr. David Hausheer
hausheer@ps.tu-darmstadt.de

PS - Peer-to-Peer Systems Engineering Lab
Dept. of Electrical Engineering and Information Technology
TUD - Technische Universität Darmstadt
Rundeturmstr. 10, D-64283 Darmstadt, Germany
Tel.+49 6151 166150, Fax. +49 6151 166152
www.ps.tu-darmstadt.de
Device-to-Device (D2D) Content Delivery

- Today: Content Delivery Networks (CDNs)
 - Mobile access network still overloaded
- D2D Content Delivery: Transmits content from one to another consumer device
- Direct radio transmission, no intermediate infrastructure
- Goals:
 - Reduce access-network infrastructure utilization
 - Increase Quality of Experience (assuming bandwidth-limited infrastructures)
D2D Content Delivery Scenario

▶ Effective specifically under certain circumstances
 ▶ Many people/devices around the user
 ▶ The content is popular
▶ D2D Content Delivery combined with consumption prediction
 ▶ Based on social information or past behavior
 ▶ Predicted content is pre-fetched whenever discovered in a crowd
▶ Example: Commuting by Train
 ▶ Content predicted to be watched is exchanged at the station/in the train
 ▶ Later consumed at work/at home
Overview

- Related Work
- Problem Statement
- Approach: Energy Efficiency
- Approach: Privacy
- Next Steps, Outlook
Related Work

Content Delivery Networks

<table>
<thead>
<tr>
<th>Method</th>
<th>Energy-aware</th>
<th>Privacy-aware</th>
<th>Multi-Hop Discovery and Delivery</th>
<th>Discovery Layer</th>
<th>Femtocell-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bao13DataSpotting</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>Licensed, e.g. LTE</td>
<td>no</td>
</tr>
<tr>
<td>Golrezaei13Femtocaching</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>Licensed, e.g. LTE</td>
<td>yes (one variant)</td>
</tr>
<tr>
<td>Yu09CellularD2D</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>Licensed, e.g. LTE</td>
<td>yes</td>
</tr>
<tr>
<td>McNamara08MediaSharing</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>802.15 SDP</td>
<td>no</td>
</tr>
<tr>
<td>Han-eDiscovery</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>802.11 802.15</td>
<td>no</td>
</tr>
<tr>
<td>Boldrini08ContentPlace</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>Unknown, abstract</td>
<td>no</td>
</tr>
<tr>
<td>Ma10Cooperative</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>Unknown, abstract</td>
<td>no</td>
</tr>
<tr>
<td>Our approach</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>802.11 PHY</td>
<td>no</td>
</tr>
</tbody>
</table>

Central-Server-based ...

- **Centralized Disc. (Operator-ctrl’d)**: Operator mediates D2D transfer on certain “hot spots”.
- **Licensed Spectrum**:
 - **Bao13DataSpotting**: Operator mediates D2D transfer, knows every D’s cont. and pos.
 - **Golrezaei13Femtocaching**: Operator mediates D2D transfer, knows every D’s cont. and pos.

Device-to-Device Content Delivery

- **802.15.1 (Bluetooth)**: Focused on spectral efficiency.
- **802.11-based (WiFi)**: Focused on efficient communication, Study in Urban Transport.

- **Ad-Hoc/WiFi-Dir.-based discv.**
 - **Han-eDiscovery**: Adaptation of 802.11/802.15 windows, beacon intervals etc.
- **Custom MAC-based discv.**
 - **Our approach**: Theoretical, message-based.

802.11-based (WiFi)
Problem: Energy Loss and User Interest

Disclosure

▶ Alternatives: LTE, Bluetooth, ZigBee, WiFi
▶ Focusing on IEEE 802.11 (WiFi)
 ▶ Unlicensed, large hardware adoption and wide communication range
▶ Current IEEE 802.11 MAC layer designed for
 ▶ low-delay, reliable communication
 ▶ between devices previously known to each other (“connection”)
▶ 802.11 for content discovery on spontaneously connected devices:
 ▶ Variety of management frames (beacons, ATIMs)
 ▶ Unnecessarily frequent / continuous medium listening
▶ Consequence: High Energy Consumption
▶ Disclosure of user interest to all devices in range
▶ How to make a self-organizing D2D content delivery system energy-efficient and privacy-aware?
Energy-Aware Content Discovery

- Single-hop D2D:
 - Stability, Medium Availability
 - Lack of incentives for intermediate nodes

- Discovery Communication:
 - Broadcasting link-layer frames in proximity
 - Agreeing on physical parameters (channel, rate) at roll-out
 - **Without** previous device scanning, participating in distributed beaconing, handshaking.
Energy-Aware Content Discovery - Sleep Cycle Comparison

- IBSS Continuous Listen State
 - Beacon Frame
 - Content Request/Advertisement Broadcast

- IBSS Powersave
 - Announcement Traffic Indication Message (ATIM)

-> Not feasible in spontaneously connected groups: hidden node problem

- Custom MAC Content Discovery
 - -> Sleep Synchronization problem
Privacy-Aware Content Discovery

- Reveal the request only to devices having the key.
 - Salt-Hash Identifiers
 - Choose a new nonce at every new request.
 - Hash every clear-text identifier using the nonce as the salt.
 - Broadcast the hashed identifiers with the nonce.

- Anonymous Addressing
 - Randomly chose and frequently change addresses on wireless medium.
 - Revealing the identity requires signal strength measurements.
Summary, Next Steps

Self-organizing D2D Content Delivery can be designed more energy-conserving and privacy-aware.

Next steps:

▶ Studying Effectivity
 ▶ Identify the situation where a D2D content delivery is effective
▶ Develop user incentives for providing content
▶ Further development to a fully-fledged protocol (MAC/Network layer)
▶ Energy- and mobility-aware simulation
▶ Prototype implementation