Precoding for Point-to-Multipoint Transmission over MIMO ISI Channels

Robert F.H. Fischer Clemens Stierstorfer Johannes B. Huber

Supported by Fraunhofer–Institut für Nachrichtentechnik, Heinrich–Hertz–Institut, Berlin, BMBF grant 01BU150
Outline

- Introduction
- MIMO ISI channel
- Precoding
- Spectral factorization
- Simulation results
- Summary
Situation: Transmission from a central transmitter (e.g., base station) to scattered receivers (e.g., mobile terminals)

\[\Rightarrow \textit{point-to-multipoint transmission (down link)} \]

- Channels which produce intersymbol interference (ISI)

\[\Rightarrow \textit{multiple-input/multiple-output (MIMO) ISI channels} \]

Problem: Intersymbol and multi-user interference

\[\Rightarrow \textit{need for separation/equalization of the users' signals} \]
Situation: Transmission from a central transmitter (e.g., base station) to scattered receivers (e.g., mobile terminals)

⇒ point-to-multipoint transmission (down link)

Channels which produce intersymbol interference (ISI)

⇒ multiple-input/multiple-output (MIMO) ISI channels

Problem: Intersymbol and multi-user interference

⇒ need for separation/equalization of the users’ signals

Here: Nonlinear joint preprocessing of the users’ signals at the transmitter side

⇒ precoding

⇒ counterpart to decision-feedback equalization/
successive cancelation in multipoint-to-point schemes
MIMO ISI Channel

System model:

- N_R distributed receivers, each with one antenna
- Central transmitter with $N_T \geq N_R$ transmit antennas; square-root Nyquist transmit filter $T \cdot h_T(t) \circ T \cdot H_T(f)$
- Continuous-time impulse responses $h_{C,\mu,\nu}(t) \circ H_{C,\mu,\nu}(f)$ spatially and temporally white additive Gaussian noise at receive antennas
Transmission over ISI channels:

- Optimum receiver for PAM transmission over ISI channels [Ericson 1971];
 generalization to MIMO ISI channels [van Etten 1975/76]:
 - Matched filter - T-spaced sampling - discrete-time processing

- Optimum transmission strategy: (dual to procedure above)
 - Joint discrete-time processing
 - Matrix of matched filters for $H_C(f) = [H_{C,m,\nu}(f)]$ at transmitter
 - Matched filters for $H_T(f)$ at receiver
 - T-spaced sampling
Transmission over ISI channels:

- Optimum receiver for PAM transmission over ISI channels [Ericson 1971];
 generalization to MIMO ISI channels [van Etten 1975/76]:
 - Matched filter
 - T-spaced sampling
 - discrete-time processing

- Optimum transmission strategy: (dual to procedure above)
 - Joint discrete-time processing
 - Matrix of matched filters for $H_C(f) = [H_{C,m,\nu}(f)]$ at transmitter
 - Matched filters for $H_T(f)$ at receiver
 - T-spaced sampling

- Discrete-time channel model:

$$H_o(e^{j2\pi fT}) = \sum_{l=-\infty}^{+\infty} H_T^*(f + l/T) H_C(f + l/T) H_C^*(f + l/T) H_T(f + l/T)$$

$$\Phi_{nn}[\kappa] = \mathbb{E}\{n[k + \kappa] n^H[k]\} \circ \Phi_{nn}(e^{j2\pi fT}) = \sigma_n^2 I \quad \text{with} \quad \sigma_n^2 = \frac{N_0}{T}$$
Abbreviation: $r_{\nu,\mu}(t) = h_{C,\mu,\nu}^*(-t)$
Precoding for MIMO ISI Channels

Spatial/temporal Tomlinson-Harashima precoding:

\[F(z) x[k] + H_0(z) y[k] + n[k] \]

\[\hat{a}[k] = g I \]

with

Feedforward filter \(F(z) \): Shapes the end-to-end signal transfer function

\[H(z) = \sum_k H_k z^{-k} = H_0(z) F(z) \]

Feedback filter \(B(z) - I \): Pre-subtraction of known interference

Permutation matrix \(P \): Processing order

Scaling factor \(g \): Compensation of transmitter side scaling
Requirements:

- **Causality:**

 Temporal causality: End-to-end response has to be causal: \(H(z) = \sum_{k \geq 0} H_k z^{-k} \)

 Spatial causality: For successive detection of symbols at one time instant \(H_0 \) has to be lower triangular with unit main diagonal

 \(\Rightarrow \) Processing in a zig-zag fashion over time and space
Requirements:

- **Causality:**

 Temporal causality: End-to-end response has to be causal:
 \[
 H(z) = \sum_{k \geq 0} H_k z^{-k}
 \]

 Spatial causality: For successive detection of symbols at one time instant
 \(H_0\) has to be lower triangular with unit main diagonal

 \(\Rightarrow\) Processing in a zig-zag fashion over time and space

- **Normalization:**

 Fixed total transmit power for each channel realization; normalization of \(F(z)\)

 \(\Rightarrow\) Each user experiences an AWGN channel with
 \[\text{SNR} = \frac{\sigma_a^2}{(g^2\sigma_n^2)}\]
Requirements:

- **Causality:**
 Temporal causality: End-to-end response has to be causal: \(H(z) = \sum_{k \geq 0} H_k z^{-k} \)
 Spatial causality: For successive detection of symbols at one time instant \(H_0 \) has to be lower triangular with unit main diagonal
 \(\Rightarrow \) Processing in a zig-zag fashion over time and space

- **Normalization:**
 Fixed total transmit power for each channel realization; normalization of \(F(z) \)
 \(\Rightarrow \) Each user experiences an AWGN channel with \(\text{SNR} = \frac{\sigma_a^2}{(g^2 \sigma_n^2)} \)

- **Minimum Phase Property and Processing Order:**
 Decisions are based on \(H_0 \), all other terms are (pre-)canceled: “\(H_0 \rightarrow \max \)”
 \(\Rightarrow H(z) \) should be minimum phase, i.e., \(\det(H(z)) \neq 0, |z| \geq 1 \)
 Optimum processing order: permutation matrix \(P \)
Solution by performing a (spectral) factorization:

\[P^T H_o(z) P = S(z) \cdot \Sigma \cdot S^H(z^{-*}) \]

with

- Real diagonal matrix \(\Sigma = \text{diag}(\varsigma_1, \ldots, \varsigma_{N_T}) \)
- Causal and minimum-phase matrix polynomial \(S(z) = \sum_{k \geq 0} S_k z^{-k} \)
- \(S_0 \) lower triangular with unit main diagonal
Solution by performing a (spectral) factorization:

\[P^T H_o(z) P = S(z) \cdot \Sigma \cdot S^H(z^{-*}) \]

with

- Real diagonal matrix \(\Sigma = \text{diag}(\varsigma_1, \ldots, \varsigma_{N_T}) \)
- Causal and minimum-phase matrix polynomial \(S(z) = \sum_{k \geq 0} S_k z^{-k} \)
 \(S_0 \) lower triangular with unit main diagonal

Feedforward matrix filter: \(F(z) = P S^{-H}(z^{-*}) \Sigma^{-1} g^{-1} \)

Normalization: \(g \) such that power constraint is met

End-to-end transfer function: \(H(z) = H_o(z) F(z) = P S(z) \)

Feedback matrix filter: \(B(z) = H(z) \)
Task: Given $H_o(z)$ find $S(z)$, Σ, and P such that

$$P^T H_o(z) P = S(z) \cdot \Sigma \cdot S^H(z^{-*})$$

Solution: (Scalar) polynomial factorization via (repeated) Cholesky decomposition of a coefficient Toeplitz matrix by F.L. Bauer 1955

- Extension to matrix polynomials by Youla/Kazanjian in 1978
 - No iterative algorithm given
 - Processing order ignored
Spectral Factorization

Task: Given $H_o(z)$ find $S(z)$, Σ, and P such that

$$P^T H_o(z) P = S(z) \cdot \Sigma \cdot S^H(\bar{z}^-)$$

Solution: (Scalar) polynomial factorization via (repeated) Cholesky decomposition of a coefficient Toeplitz matrix by F.L. Bauer 1955

- Extension to matrix polynomials by Youla/Kazanjian in 1978
 - No iterative algorithm given
 - Processing order ignored

Now: Easy-to-use iterative algorithm

- Two-step algorithm
 - First step: $P = I$
 - Second step: Optimal detection order
First step: \textit{Factorization}

\[H_o(z) = \sum_k H_{o,k} z^{-k} = T(z) T^H(z^{-*}) \]

\textbf{Iterative algorithm:} (lower triangular matrix $\sqrt{X} = \text{Cholesky factor of } X$)

\[
L_{0,0} = \sqrt{H_{o,0}} \\
L_{m,i} = \left(H_{o,m-i} - \sum_{k=0}^{i-1} L_{m,k} L^H_{i,k} \right) L^{-H}_{i,i}, \quad i = 0, \ldots, m-1 \\
L_{m,m} = \sqrt{H_{o,0} - \sum_{k=0}^{m-1} L_{m,k} L^H_{m,k}}
\]

\textbf{Convergence:}

\[T_k = \lim_{m \to \infty} L_{m,m-k}, \quad k = 0, 1, \ldots, m \]
Second step: Optimal processing order

Idea:
- Spectral factorization is unique up to a unitary matrix
- Only coefficient matrix at time index 0 is of interest

⇒ Optimal processing order can be derived based on T_0 from above
Second step: Optimal processing order

Idea:
- Spectral factorization is unique up to a unitary matrix
- Only coefficient matrix at time index 0 is of interest

\[\Rightarrow \text{Optimal processing order can be derived based on } T_0 \text{ from above} \]

Decomposition (can be done via V-BLAST algorithm applied to \(T_0^H \))

\[P^T \cdot T_0 = R \cdot Q^H \]

with
- \(P \): Permutation matrix
- \(R \): Lower triangular matrix
- \(Q \): Unitary matrix

Using \(D = \text{diag}(r_{1,1}, \ldots, r_{N_R,N_R}) \), \(R = [r_{l,m}] \)

\[\Sigma = DD^H \quad S(z) = P^T T(z) Q D^{-1} \]
Simulation Results

Parameters:

- \(N_T = 4 \) antennas at the central transmitter, \(N_R = 4 \) decentralized receivers
- Uncoded transmission using 16-QAM
- Fixed short-term transmit power
- Block-fading MIMO ISI channel; averaging over channel realizations
 - I.i.d. complex Gaussian elements of the tap matrices (discrete-time model)
 Average energy of channel is normalized to \(N_T \cdot N_R \)
 - Power-delay profile:
 - Equal-gain test channel
 - Exponentially decaying ("Pedestrian A")
 - Correlations:
 - No correlations (i.i.d. fading coefficients)
 - Transmitter side correlations ("novi 2" [IST-METRA])
- Processing order: optimal or arbitrary
Simulation Results (II)

Constant power-delay profile; \(L = 2, 4, \) and \(8 \) \(T \)-spaced taps

\[
10 \log_{10}(\bar{E}_b/N_0) \ [\text{dB}]
\]

SER

Precoding, opt. sort
Precoding, no sort
Linear preequalization

\(L = 2 \)
\(L = 4 \)
\(L = 8 \)

Fischer et al.: Precoding for Point-to-Multipoint Transmission over MIMO ISI Channels
Exponentially decaying power-delay profile; $L = 4$

10 log_{10}(\bar{E}_b/N_0) [dB] \rightarrow

SER \rightarrow

Fischer et al.: Precoding for Point-to-Multipoint Transmission over MIMO ISI Channels
Simulation Results (IV)

Exponentially decaying power-delay profile; $L = 4$; transmitter-side correlations

![Graph showing SER vs. $10 \log_{10}(E_b/N_0)$ for different precoding methods and correlation conditions.](image)

- Precoding, opt. sort
- Precoding, no sort
- Linear preequalization
- Correlations
- No correlations

Fischer et al.: Precoding for Point-to-Multipoint Transmission over MIMO ISI Channels
Digital transmission over MIMO channels with ISI:

Transmitter: discrete-time processing, pulse shaping, channel matched filter
Receiver: pulse shaping matched filter, T-spaced sampling

Attractive equalization strategy in point-to-multipoint scenarios:

Spatial/temporal precoding

Requirements and derivation of optimal discrete-time processing

Filter calculation by solving a spectral factorization problem

Efficient factorization algorithm has been given

Simulation results show:

Considerable gains over linear preequalization are possible